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Abstract:  As old as subject of branching process theory, its application still extend to our contemporary time, the focus of 

this research work is on the application of branching process to the family of Nakakare. The data used was 

obtained by personal interview and analyzed using probability generating function in order to obtain the fitted 

probability model of the family. The model obtained is found to be the probability generating function of negative 

binomial distribution, from this probability model the average number of descendants in every generation was 

estimated and it shows that as the number of generation increase the number of descendants also increase. This 

method of studying branching flow of the family can be employed to model other systems with similar dynamics. 
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Introduction 

Miguel and Puerto (2010) defined Bienayme-Galton Watson 

Branching process with the nomenclature of population 

dynamics, as a discrete-time stochastic process that describes 

the evolution of a population in which each individual 

independently of the others gives rise to a random number of 

offspring (in accordance with a common reproduction law), 

and then dies or is not considered in the following counts. We 

shall give its formal definition and establish some interesting 

properties. Let {𝑋𝑛𝑗 ∶ 𝑛 = 0,1, … ; 𝑗 = 0,1, … } be non-

negative integer valued independent and identically 

distributed (i.i.d.) random variables with probability 

distribution {𝑃𝑘}𝑘≥0 i.e. 𝑃(𝑋01 = 𝑘) = 𝑃𝑘 , 𝑘 ≥ 0. The BGWP 

is a stochastic process, {𝑍𝑛}𝑛≥0, defined recursively as 

follows: 

𝑍0 = 𝑁𝜖ℕ, 𝑍𝑛+1 = ∑ 𝑋𝑛𝑗 , 𝑛 ≥ 1
𝑍𝑛
𝑗=1   

Where ∑ 𝑋𝑛𝑗
0
𝑗=1  is defined to be zero. Thus, 𝑋𝑛𝑗  represents 

the number of offspring produced by the 𝑗𝑡ℎ individual in the 

𝑛𝑡ℎ generation, and 𝑍𝑛 represents the number of individuals 

in the 𝑛𝑡ℎ generation. We refer to {𝑃𝑘}𝑘≥0 as the offspring 

distribution or law, with 𝑃𝑘 being interpreted as the 

probability that an individual has 𝑘 offspring, in the simplest 

case to determine the fitted probability model of the family as 

a population that does not vary from individual to individual.  

In species with sexual reproduction the population sizes 

depend on the formation of couples. In many populations, 

mating is an important factor that cannot be neglected. 

Bisexual branching processes take this into account explicitly. 

In general, these processes start with N couples. Each couple 

has random numbers of female and male offspring which form 

new couples in accordance with a deterministic or stochastic 

function, and so on (Haccou et al., 2005). 

The aim of this study is to obtain the fitted probability model 

of occurrence of birth in a family. Therefore the objectives of 

this study are as follows: 

i. To determine the average number of offspring in every 

generation 

ii. To obtain a model that will be used in predicting number 

of offspring at higher generations 

iii. To obtain the probability of extinction of the derived  

model 

Introducing notations and terminology 

i. Pj is the individual probability of producing j offspring 

in the family 

ii. Xn is the generation size 

iii. G(S) = Probability generating function. 

iv. 𝑗 number of offspring that produce another offspring 

 

Procedure for obtaining the fitted probability model using 

probability generating function 

Assume that an individual has a known probability of 

producing a number of descendants at a given time and 

produce no other descendant. In turn these descendants each 

produce further descendant at the next subsequent time with 

the same probability. This process creates a successive 

generation [Prof. Bashir, M. lecture note, June, 2015] 

At each step there is probability 𝑃𝑗 that any individual create 𝑗 

descendants which is assume to be the same for every 

individual at every generation. Let  𝑋𝑛 be a discrete random 

variable representing the population size of the 𝑛𝑡ℎ generation 

taking values in the non-negative integers [0,1,2,3,4.....], then 

the probability generating function of the descendant numbers 

𝑋𝑛 is define as  

𝐺(𝑆) = 𝐸(𝑆𝑗) = ∑ 𝑃𝑗
∞
𝑗=0 𝑆𝑗                                    1.3.1   

 𝑙𝑒𝑡 𝐺1(𝑆)𝑏𝑒 𝑡ℎ𝑒 𝑝𝑔𝑓 𝑜𝑓 𝑋0 = 1 𝑎𝑛𝑑 

𝐺2(𝑆) 𝑏𝑒 𝑡ℎ𝑒 𝑝𝑔𝑓 𝑜𝑓 𝑋2, which is the sum of 𝑋1 random 

variables. (The descendants of  𝑋0). Which in turn we denoted 

by independent random variables say,  Y1, Y2, … , Yx1. So that, 

𝑋2 = 𝑌1 + 𝑌2 + … + 𝑌𝑋1 

 𝑙𝑒𝑡 𝑃𝑗 = 𝑃(𝑌𝑘 = 𝑗); 𝑗 = 0,1,2 … 

𝑃𝑟 = 𝑃(𝑋1 = 𝑟). And    𝑃𝑛 = 𝑃(𝑋2 = 𝑛). 

Using partition law 

 𝑃𝑛 = ∑ 𝑃(𝑋2 = 𝑛/𝑋1  = 𝑟)𝑃(𝑋1 = 𝑟)∞
𝑟=0  

𝑃𝑛  =  ∑ 𝑃𝑟𝑃(𝑋2 = 𝑛/𝑋1  = 𝑟)∞
𝑟=0   

Multiply both side by 𝑆𝑛 and sum over n. i.e ∑ 𝑃𝑛
∞
𝑛=0 𝑆𝑛 =

∑ 𝑃𝑟
∞
𝑟=0 ∑ 𝑃(𝑋2 = 𝑛/𝑋1  = 𝑟)𝑆𝑛∞

𝑛=0  

𝐺2(𝑆)  = ∑ 𝑃𝑟
∞
𝑟=0 ∑ 𝑃(𝑋2 = 𝑛/𝑋1  = 𝑟)𝑆𝑋2∞

𝑛=0              1.3.2  

From equation (1.3.2) above, 

∑ 𝑃 (𝑋2 =
𝑛

𝑋1
= 𝑟) 𝑆𝑋2 = 𝐸(𝑆𝑋2)∞

𝑛=0       

Where 𝑃(𝑋2 = 𝑛/𝑋1  = 𝑟) is the conditional probability 

function for 𝑋2 / 𝑋1 

𝐸(𝑆𝑋2)  = 𝐸(𝑆𝑌1+ 𝑌2+⋯+𝑌𝑋1)  

𝐸(𝑆𝑋2)  = 𝐸(𝑆𝑌1 . 𝑆𝑌2 . 𝑆𝑌3 … . 𝑆𝑌𝑋1)  

𝐸(𝑆𝑋2)  = 𝐸(𝑆𝑌1)𝐸(𝑆𝑌2)𝐸(𝑆𝑌3) … . 𝐸(𝑆𝑌𝑋1)  
Since, every individual in the process reproduced 

independently. 

𝐸(𝑆𝑋2)  = {𝐺(𝑆). 𝐺(𝑆). 𝐺(𝑆) … . 𝐺(𝑆)}  

𝐸(𝑆𝑋2)  = [𝐺(𝑆)]𝑟  

Substitute back in to equation (1.3.2) 

𝐺2(𝑆)   = 𝐸[𝐺(𝑆)]𝑟 = ∑ 𝑃𝑟[𝐺(𝑆)]𝑟∞
𝑟=0   

𝐺2(𝑆) = ∑ 𝑃𝑟[𝐺(𝑆)]𝑟∞
𝑟=0 =  {𝐺(𝐺(𝑆))}                1.3.3  

Equation (1.3.3) gives the probability generating function of 

second generation. The probability generating function of 

third generation using the same procedure is; 

𝐺3(𝑆) =  ∑ 𝑃𝑟[𝐺(𝐺(𝑆))]𝑟∞
𝑟=0 . 
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In general probability generating function of nth generation is  

𝐺𝑛(𝑆) =  ∑ 𝑃𝑟[𝐺𝑛−1(𝐺(𝑆))]𝑟∞
𝑟=0 =  𝐺𝑛−1(𝐺(𝑆))  

𝐺𝑛(𝑆) = [𝐺(𝐺 … (𝐺(𝑆)) … )]                                  1.3.4 

 

 

 
 

 

Define the probability generating function of the nth 

generation by 

𝐺𝑛(𝑆) = 𝐸(𝑆𝑗) =  ∑ 𝑃𝑗
∞
𝑗=0 𝑆𝑗  

Which is the probability generating function of producing j 

offspring in the next generation. 

To find the fitted probability model for the nth generation, we 

need to observe the behavior of the branching system 

(assumption of branching process); 

1 Giving birth in every woman occurs with time. 

2 Every individual in the same generation have equal 

probability of producing number of offspring. 

3 The occurrences are independent; that is, given birth 

of a woman do not affect another woman. 

These behaviors (assumptions) are exactly the same with the 

theoretical form of Poisson assumption which are as follows: 

1 An event occurs from time to time. 

2 Events in a time interval have certain probability of 

occurrence.    

3 The occurrences are independent. 

Since the behaviors of branching process are the same with 

Poisson assumption; we consider giving birth of individual as 

occurrences of event in Poisson process denoted by 𝑁(𝑡) 

Let 𝑁(𝑡) be the number of events that have occurred in the 

interval(0, 𝑡). Let event A denote the occurrence of exactly 

one event in the interval (𝑡, 𝑡 + ℎ). Similarly, let B and C 

respectively denote the occurrence of none and more than one 

event in the interval (𝑡, 𝑡 + ℎ) (Joyce, 2014). 

 Also let  

 𝑃(𝐴 = 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑒𝑣𝑒𝑛𝑡) = 𝑝(ℎ) 

 𝑃(𝐵 = 𝑛𝑜 𝑒𝑣𝑒𝑛𝑡) = 𝑞(ℎ) 

 𝑃(𝐶 = 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝑜𝑛𝑒 𝑒𝑣𝑒𝑛𝑡) = ϵ(ℎ) 

Now, N(t) form a Poisson process with the following four 

conditions;  

1 𝑁(0) = 0 

2 Events occurring in non-overlapping interval of time 

are mutually independence. 

3 The probabilities𝑝(ℎ), 𝑞(ℎ) and ϵ(ℎ) depend only on 

the length h of time interval and not on the time origin 

t. 

4 For sufficiently small values of h, we can write for 

positive constant 𝜆 

𝑝(ℎ) = 𝑃[𝑜𝑛𝑒 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑡, 𝑡 + ℎ]]  

𝑝(ℎ) = 𝜆ℎ + 0(ℎ)  

𝑞(ℎ) = 𝑃[𝑛𝑜 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑡, 𝑡 + ℎ]]  

𝑞(ℎ) = 1 − 𝜆ℎ + 0(ℎ) 

ϵ(ℎ) = 𝑃[𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝑜𝑛𝑒 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒  (𝑡, 𝑡 + ℎ]]  

ϵ(ℎ) = 0(ℎ)  

Where lim
ℎ→𝑜

0(ℎ)

ℎ
= 0 

Let 𝑃𝑛(𝑡) = 𝑃[𝑁(𝑡) = 𝑛] 
From condition 1 

𝑃0(0) = 1, 𝑎𝑛𝑑 𝑃𝑛(0) = 0 ; 𝑛 > 0  

Now, consider two successive non-overlapping interval 
(0, 𝑡]𝑎𝑛𝑑 (𝑡, 𝑡 + 𝜏] 
To compute the probability that n events occur in the interval 

(0, 𝑡 + 𝜏] given by  

𝑃[𝑛 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 (0, 𝑡 + 𝜏)] =  𝑃𝑛(𝑡 + 𝜏)  

By total probability theorem  

𝑃[𝑛 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 (0, 𝑡 + 𝜏)] =  
∑ 𝑃[𝑘 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 (0, 𝑡) 𝑎𝑛𝑑 𝑛 − 𝑘  𝑖𝑛 (𝑡, 𝑡 + 𝜏)]𝑛

𝑘=0  =  

∑ 𝑃[𝑘 𝑖𝑛 (0, 𝑡)]𝑃[𝑛 − 𝑘 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 (𝑡, 𝑡 + 𝜏)]𝑛
𝑘=0   

𝑃𝑛(𝑡 + 𝜏) =  ∑ 𝑃𝑘(𝑡)𝑃𝑛−𝑘(𝜏)𝑛
𝑘=0         

𝑓𝑜𝑟 𝑛 > 0 𝑎𝑛𝑑 𝑤ℎ𝑒𝑛 𝜏 = ℎ  

𝑃𝑛(𝑡 + ℎ) =  ∑ 𝑃𝑘(𝑡)𝑃𝑛−𝑘(ℎ)𝑛
𝑘=0   

𝑃𝑛(𝑡 + ℎ) =  𝑃0(𝑡)𝑃𝑛(ℎ) + 𝑃1(𝑡)𝑃𝑛−1(ℎ) +
∑ 𝑃𝑖(𝑡)𝑃𝑛−𝑖(ℎ)𝑛

𝑖=2   

𝑃𝑛(𝑡 + ℎ) = 𝑃[𝑛𝑜𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 (𝑡, 𝑡 + ℎ)]𝑃[𝑁(𝑡) = 𝑛] +
𝑃[𝑜𝑛𝑒 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 (𝑡, 𝑡 + ℎ)]𝑃[𝑁(𝑡) = 𝑛 − 1] +
∑ 𝑃𝑖(𝑡)𝑃𝑛−𝑖(ℎ)𝑛

𝑖=2   

𝑃𝑛(𝑡 + ℎ) = 𝑃𝑛(𝑡)[1 − 𝜆ℎ + 0(ℎ)] + 𝑃𝑛−1(𝑡)[𝜆ℎ + 0(ℎ)] +
∑ 𝑃𝑖(𝑡)0(ℎ)𝑛

𝑖=2   

𝑃𝑛(𝑡 + ℎ) = 𝑃𝑛(𝑡) − 𝜆ℎ𝑃𝑛(𝑡) + 𝜆ℎ𝑃𝑛−1(𝑡) + 0(ℎ)  

𝑃𝑛(𝑡 + ℎ) − 𝑃𝑛(𝑡) = −𝜆ℎ𝑃𝑛(𝑡) + 𝜆ℎ𝑃𝑛−1(𝑡) + 0(ℎ) 
𝑃𝑛(𝑡+ℎ)

ℎ
−

𝑃𝑛(𝑡)

ℎ
= −𝜆𝑃𝑛(𝑡) + 𝜆𝑃𝑛−1(𝑡) +

0(ℎ)

ℎ
  

lim
ℎ→0

𝑃𝑛(𝑡+ℎ)

ℎ
−

𝑃𝑛(𝑡)

ℎ
= −𝜆𝑃𝑛(𝑡) + 𝜆𝑃𝑛−1(𝑡) + lim

ℎ→0

0(ℎ)

ℎ
  

𝑑𝑃𝑛(𝑡)

𝑑(𝑡)
= −𝜆𝑃𝑛(𝑡) + 𝜆𝑃𝑛−1(𝑡)  

𝑃𝑛
′(𝑡) = −𝜆𝑃𝑛(𝑡) + 𝜆𝑃𝑛−1(𝑡)                                  1.4.1  

Multiply both side of equation (1.4.1)  by 𝑒⋋𝑡 

𝑒𝜆𝑡𝑃𝑛
′(𝑡) = −𝜆𝑃𝑛(𝑡)𝑒𝜆𝑡 + 𝜆𝑃𝑛−1(𝑡)𝑒𝜆𝑡                 1.4.2  

 𝑙𝑒𝑡, 𝑄𝑛(𝑡) = 𝑃𝑛(𝑡)𝑒𝜆𝑡  𝑎𝑛𝑑 𝑄𝑛−1(𝑡) = 𝑃𝑛−1(𝑡)𝑒𝜆𝑡  

𝑄𝑛
′ (𝑡) = 𝜆𝑒𝜆𝑡𝑃𝑛(𝑡) + 𝑃𝑛

′(𝑡)𝑒𝜆𝑡  

𝑄𝑛
′ (𝑡) = 𝜆𝑒𝜆𝑡𝑃𝑛(𝑡) + (−𝜆𝑃𝑛(𝑡)𝑒𝜆𝑡+𝜆𝑃𝑛−1(𝑡)𝑒𝜆𝑡)  

𝑄𝑛
′ (𝑡) = 𝜆𝑃𝑛−1(𝑡)𝑒𝜆𝑡  

𝑄𝑛
′ (𝑡) = 𝜆𝑄𝑛−1(𝑡)                                                      1.4.3 

Using the boundary conditions that  

𝑄0
′ (𝑡) = 1 𝑎𝑛𝑑 𝑄𝑛

′ (𝑡) = 0  

From equation (1.4.3) When n = 1 

𝑄1
′ (𝑡) =  𝜆  Integrating both side with respect to t 

∫ 𝑄1
′ (𝑡)𝑑𝑡 = ∫ 𝜆𝑑𝑡  

𝑄1(𝑡) = 𝜆𝑡  
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When n = 2 

𝑄2
′ (𝑡) = 𝜆𝑄1(𝑡)  

𝑄2
′ (𝑡) = 𝜆2𝑡  

∫ 𝑄2
′ (𝑡)𝑑𝑡 = ∫ 𝜆2𝑡𝑑𝑡  

𝑄2(𝑡) =
𝜆2𝑡2

2
=

(𝜆𝑡)2

2!
  

When n = 3 

𝑄3
′ (𝑡) = 𝜆𝑄2(𝑡)  

𝑄3
′ (𝑡) = 𝜆

(𝜆𝑡}2

2
=

𝜆3𝑡2

2
  

∫ 𝑄3
′ (𝑡)𝑑𝑡 =

𝜆3

2
∫ 𝑡2𝑑𝑡  

𝑄3(𝑡) =
𝜆3𝑡3

2∗3
=

(𝜆𝑡)3

3!
  

In general 

𝑄𝑛(𝑡) =
(𝜆𝑡)𝑛

𝑛!
  

𝑒𝜆𝑡𝑃𝑛(𝑡) =
(𝜆𝑡)𝑛

𝑛!
  

𝑃𝑛(𝑡) =
(𝜆𝑡)𝑛𝑒−𝜆𝑡

𝑛!
  

This shows that considering birth of offspring in branching 

process as occurrence of event has a Poisson probability 

density function. Now at steady state and when 𝑛 = 𝑗 

𝑃𝑗 =
(𝜆𝑡)𝑗𝑒−𝜆𝑡

𝑗!
  

The probability generating function of the process is  

𝐺𝑝(𝑠) = ∑ 𝑃𝑗𝑆𝑗∞
𝑗=0   

𝐺𝑝(𝑠) = ∑
(𝜆𝑡)𝑗𝑒−𝜆𝑡𝑆𝑗

𝑗!

∞
𝑗=0   

𝐺𝑝(𝑠) = [
(𝜆𝑡)0𝑒−𝜆𝑡𝑆0

0!
+

(𝜆𝑡)1𝑒−𝜆𝑡𝑆1

1!
+

(𝜆𝑡)2𝑒−𝜆𝑡𝑆2

2!
+ ⋯ ]  

𝐺𝑝(𝑠) = [𝑒−𝜆𝑡 +
𝜆𝑡𝑒−𝜆𝑡𝑆

1!
+

(𝜆𝑡)2𝑒−𝜆𝑡𝑆2

2!
+ ⋯ ]  

𝐺𝑝(𝑠) = 𝑒−𝜆𝑡[1 +
𝜆𝑡𝑠

1!
+

(𝜆𝑡𝑠)2

2!
+ ⋯ ]  

[1 +
𝜆𝑡𝑠

1!
+

(𝜆𝑡𝑠)2

2!
+ ⋯ ] = 𝑒𝜆𝑡𝑠  

𝐺𝑝(𝑠) = 𝑒−𝜆𝑡𝑒𝜆𝑡𝑠  

𝐺𝑝(𝑠) = 𝑒𝜆𝑡(𝑠−1)  

In a process where branching occurs from Poisson process to 

logarithmic distribution the most elegant way to determine the 

resulting distribution is by use of probability generating 

function (Christian Walck, 2007). 

The probability generating function of logarithmic distribution 

is 

 𝐺𝑙(𝑠) =
ln(1−𝑠𝑞)

ln(1−𝑞)
= 𝛼 ln(1 − 𝑠𝑞) 

Where 0 ≤ 𝑞 ≤ 1 𝑎𝑛𝑑 𝛼 = 1/ ln(1 − 𝑞) 

For branching process in n-steps 

𝐺(𝑠) = 𝐺1(𝐺2(… 𝐺𝑛−1(𝐺𝑛(𝑠)) … ))  

The resulting probability model is obtained by nesting the 

logarithmic probability generating function in Poisson 

probability generating function. 

𝐺(𝑠) = 𝐺𝑝(𝐺𝑙(𝑠))  

𝐺(𝑠) = exp {𝜆𝑡[𝛼 ln(1 − 𝑠𝑞) − 1]}  

𝐺(𝑠) = exp {𝜆𝑡𝛼 ln(1 − 𝑠𝑞) − 𝜆𝑡}  

𝐺(𝑠) = exp ln(1 − 𝑠𝑞)𝜆𝑡𝛼𝑒𝑥𝑝−𝜆𝑡  

𝐺(𝑠) = (1 − 𝑠𝑞)𝜆𝑡𝛼𝑒𝑥𝑝−𝜆𝑡  

𝑙𝑒𝑡 𝜆𝑡𝛼 = −𝑗  

From this we have  

𝜆𝑡 = −
𝑗

𝛼
  

𝜆𝑡 =
−𝑗

[ln(1−𝑞)]−1 = −𝑗 ln(1 − 𝑞)  

𝐺(𝑠) = (1 − 𝑠𝑞)−𝑗𝑒𝑥𝑝−[−𝑗 ln(1−𝑞)]  

𝐺(𝑠) = (1 − 𝑠𝑞)−𝑗𝑒𝑥𝑝𝑗 ln(1−𝑞)  

𝐺(𝑠) = (1 − 𝑠𝑞)−𝑗𝑒𝑥𝑝 ln(1 − 𝑞)𝑗  

𝐺(𝑠) = (1 − 𝑠𝑞)−𝑗(1 − 𝑞)𝑗  

𝐺(𝑠) = 𝑃𝑗(1 − 𝑠𝑞)−𝑗  

𝐺(𝑠) = (
𝑃

1−𝑠𝑞
)

𝑗
                                    (1.4.4)  

The resulting model is recognized as probability generating 

function of negative binomial distribution with parameter j 

and p. 

 

Methodology 

The method adapted in this paper is primary method of data 

collection by personal interview and tool used for data 

analysis was probability generating function. 

 

 Main Result 

In generation 1: 

𝑗 = 10  

𝑋1 = 19  

𝑃 =
𝑗

𝑋1
=

10

19
= 0.5263  

𝑞 = 1 − 𝑝 = 1 − 0.5263 = 0.4737  

Substituting in (1.3.4) 

𝐺1(𝑆) = (
0.5263

1−0.4737𝑠
)

10
= 0.00163(1 − 0.4737𝑠)−10  

𝜇1 =
𝑑𝐺1(𝑠)

𝑑𝑠
|

𝑠=1
= 0.00772(1 − 0.4737)−11 

 
𝑑𝐺1(𝑠)

𝑑𝑠
|

𝑠=1
=

0.00772

0.00086
= 9  Offspring  

𝜇2 =
𝑑𝐺2(𝑠)

𝑑𝑠
|

𝑠=1
= 𝜇1 ∗ 𝜇1 = 𝜇1

2  

𝜇2 = 9 ∗ 9 = 81  Offspring 

The model can also be used in predicting number of offspring 

at higher generation, the expected number of offspring in 

generation 𝑛 can be obtain using the derived model below. 

 𝜇𝑛 =
𝑑𝐺𝑛(𝑠)

𝑑𝑠
|

𝑠=1
= (

10∗0.4737

0.5263
)

𝑛
 

 

 
Fig. 1: Graphical representation of the generation size 
 

 

Applying equation (1.3.1) to equation (1.4.4) 

 𝐺(𝑆) = ∑ 𝑃𝑗
∞
𝑗=0 𝑆𝑗 

𝐺(𝑆) = ∑ 𝑃𝑗 (
1

1−𝑠𝑞
)

𝑗
∞
𝑗=0   

𝐺(𝑆) = 1 + 𝑃 (
1

1−𝑠𝑞
) + 𝑃2 (

1

1−𝑠𝑞
)

2
+ 𝑃3 (

1

1−𝑠𝑞
)

3
+ ⋯  

𝐺(𝑆) = 1 + ∑ 𝑃𝑗 (
1

1−𝑠𝑞
)

𝑗
                               3.1.1  ∞

𝑗=1   

From the equation above when 𝑗 = 0, 𝐺(𝑆) = 1 this can be 

interpreted as when there are 0 offspring in any generation, 

the probability of extinction is 1. That is extinction is certain 

in a generation with zero number of offspring. 
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Conclusion 

The resulting model obtained is recognized as probability 

generating function of negative binomial distribution with 

parameters j and p. This shows that considering birth pattern 

in branching process as occurrence of event in Poisson 

process branches in to logarithmic distribution and the 

resulting model obtained is negative binomial probability 

generating function. Hence, we conclude that the resulting 

probability model of branching system of the family is 

negative binomial or branching system of the family follows 

negative binomial distribution. 

From the data collected 𝑋0 = 1, 𝑋1 = 19 𝑎𝑛𝑑 𝑋2 = 60 are the 

population sizes of generation 0, generation 1 and generation 

2, respectively. The expected generation sizes obtained are: 

𝑋0 = 1, 𝑋1 = 9 𝑎𝑛𝑑 𝑋2 = 81. The result shows that the 

higher the generation size the larger the population size. 

The population size of 𝑋𝑛 generation can be predicted using 

the derived model below. 

(
10 ∗ 0.4737

0.5263
)

𝑛

 

The probability of extinction of the family is one when the 

generation size is zero. Hence the objectives of this paper are 

achieved. 
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